...
<p>In order to keep the economic value of pistachio nuts which have an important place in the agricultural economy, the efficiency of post-harvest industrial processes is very important. To provide this efficiency, new methods and technologies are needed for the separation and classification of pistachios. Different pistachio species address different markets, which increases the need for the classification of pistachio species. In this study, it is aimed to develop a classification model different from traditional separation methods, based on image processing and artificial intelligence which are capable to provide the required classification. A computer vision system has been developed to distinguish two different species of pistachios with different characteristics that address different market types. 2148 sample image for these two kinds of pistachios were taken with a high-resolution camera. The image processing techniques, segmentation and feature extraction were applied on the obtained images of the pistachio samples. A pistachio dataset that has sixteen attributes was created. An advanced classifier based on k-NN method, which is a simple and successful classifier, and principal component analysis was designed on the obtained dataset. In this study; a multi-level system including feature extraction, dimension reduction and dimension weighting stages has been proposed. Experimental results showed that the proposed approach achieved a classification success of 94.18%. The presented high-performance classification model provides an important need for the separation of pistachio species and increases the economic value of species. In addition, the developed model is important in terms of its application to similar studies.</p> Read More
...
<p>The main product of grapevines is grapes that are consumed fresh or processed. In addition, grapevine leaves are harvested once a year as a by-product. The species of grapevine leaves are important in terms of price and taste. In this study, deep learning-based classification is conducted by using images of grapevine leaves. For this purpose, images of 500 vine leaves belonging to 5 species were taken with a special self-illuminating system. Later, this number was increased to 2500 with data augmentation methods. The classification was conducted with a state-of-art CNN model fine-tuned MobileNetv2. As the second approach, features were extracted from pre-trained MobileNetv2′s Logits layer and classification was made using various SVM kernels. As the third approach, 1000 features extracted from MobileNetv2′s Logits layer were selected by the Chi-Squares method and reduced to 250. Then, classification was made with various SVM kernels using the selected features. The most successful method was obtained by extracting features from the Logits layer and reducing the feature with the Chi-Squares method. The most successful SVM kernel was Cubic. The classification success of the system has been determined as 97.60%. It was observed that feature selection increased the classification success although the number of features used in classification decreased.</p><p>Keywords: Deep learning, Transfer learning, SVM, Grapevine leaves, Leaf identification</p> Read More