<p>Highlights<br>• Arborio, Basmati, Ipsala, Jasmine and Karacadag rice varieties were used.<br>• The dataset (1) has 75K images including 15K pieces from each rice variety. The dataset (2) has 12 morphological, 4 shape and 90 color features.<br>• ANN, DNN and CNN models were used to classify rice varieties.<br>• Classified with an accuracy rate of 100% through the CNN model created.<br>• The models used achieved successful results in the classification of rice varieties.</p><p>Abstract<br>Rice, which is among the most widely produced grain products worldwide, has many genetic varieties. These varieties are separated from each other due to some of their features. These are usually features such as texture, shape, and color. With these features that distinguish rice varieties, it is possible to classify and evaluate the quality of seeds. In this study, Arborio, Basmati, Ipsala, Jasmine and Karacadag, which are five different varieties of rice often grown in Turkey, were used. A total of 75,000 grain images, 15,000 from each of these varieties, are included in the dataset. A second dataset with 106 features including 12 morphological, 4 shape and 90 color features obtained from these images was used. Models were created by using Artificial Neural Network (ANN) and Deep Neural Network (DNN) algorithms for the feature dataset and by using the Convolutional Neural Network (CNN) algorithm for the image dataset, and classification processes were performed. Statistical results of sensitivity, specificity, prediction, F1 score, accuracy, false positive rate and false negative rate were calculated using the confusion matrix values of the models and the results of each model were given in tables. Classification successes from the models were achieved as 99.87% for ANN, 99.95% for DNN and 100% for CNN. With the results, it is seen that the models used in the study in the classification of rice varieties can be applied successfully in this field.</p>
Read More
<p>Highlights<br>• Classification of five classes of grapevine leaves by MobileNetv2 CNN Model.<br>• Classification of features using SVMs with different kernel functions.<br>• Implementing a feature selection algorithm for high classification percentage.<br>• Classification with highest accuracy using CNN-SVM Cubic model.</p><p>Abstract: The main product of grapevines is grapes that are consumed fresh or processed. In addition, grapevine leaves are harvested once a year as a by-product. The species of grapevine leaves are important in terms of price and taste. In this study, deep learning-based classification is conducted by using images of grapevine leaves. For this purpose, images of 500 vine leaves belonging to 5 species were taken with a special self-illuminating system. Later, this number was increased to 2500 with data augmentation methods. The classification was conducted with a state-of-art CNN model fine-tuned MobileNetv2. As the second approach, features were extracted from pre-trained MobileNetv2′s Logits layer and classification was made using various SVM kernels. As the third approach, 1000 features extracted from MobileNetv2′s Logits layer were selected by the Chi-Squares method and reduced to 250. Then, classification was made with various SVM kernels using the selected features. The most successful method was obtained by extracting features from the Logits layer and reducing the feature with the Chi-Squares method. The most successful SVM kernel was Cubic. The classification success of the system has been determined as 97.60%. It was observed that feature selection increased the classification success although the number of features used in classification decreased.</p><p>Keywords: Deep learning, Transfer learning, SVM, Grapevine leaves, Leaf identification</p>
Read More